Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Immunol ; 9(95): eadj9730, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728414

ABSTRACT

Chimeric antigen receptor (CAR) T cell immunotherapy for the treatment of neurological autoimmune diseases is promising, but CAR T cell kinetics and immune alterations after treatment are poorly understood. Here, we performed single-cell multi-omics sequencing of paired cerebrospinal fluid (CSF) and blood samples from patients with neuromyelitis optica spectrum disorder (NMOSD) treated with anti-B cell maturation antigen (BCMA) CAR T cells. Proliferating cytotoxic-like CD8+ CAR T cell clones were identified as the main effectors in autoimmunity. Anti-BCMA CAR T cells with enhanced features of chemotaxis efficiently crossed the blood-CSF barrier, eliminated plasmablasts and plasma cells in the CSF, and suppressed neuroinflammation. The CD44-expressing early memory phenotype in infusion products was potentially associated with CAR T cell persistence in autoimmunity. Moreover, CAR T cells from patients with NMOSD displayed distinctive features of suppressed cytotoxicity compared with those from hematological malignancies. Thus, we provide mechanistic insights into CAR T cell function in patients with neurological autoimmune disease.


Subject(s)
Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Single-Cell Analysis , Humans , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Autoimmunity/immunology , Neuromyelitis Optica/immunology , Neuromyelitis Optica/therapy , Female , Male , Adult , Middle Aged , Central Nervous System/immunology
2.
Brain Behav Immun ; 119: 416-430, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38636563

ABSTRACT

The role of microglia in triggering the blood-brain barrier (BBB) impairment and white matter damage after chronic cerebral hypoperfusion is unclear. Here we demonstrated that the vessel-adjacent microglia were specifically activated by the leakage of plasma low-density lipoprotein (LDL), which led to BBB breakdown and ischemic demyelination. Interestingly, we found that LDL stimulation enhanced microglial phagocytosis, causing excessive engulfment of myelin debris and resulting in an overwhelming lipid burden in microglia. Surprisingly, these lipid-laden microglia exhibited a suppressed profile of inflammatory response and compromised pro-regenerative properties. Microglia-specific knockdown of LDLR or systematic medication lowering circulating LDL-C showed protective effects against ischemic demyelination. Overall, our findings demonstrated that LDL-stimulated vessel-adjacent microglia possess a disease-specific molecular signature, characterized by suppressed regenerative properties, which is associated with the propagation of demyelination during ischemic white matter damage.

3.
Chin Med J (Engl) ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38613216

ABSTRACT

ABSTRACT: Chimeric antigen receptor (CAR)-T cell therapy has achieved remarkable success in the treatment of hematological malignancies. Based on the immunomodulatory capability of CAR-T cells, efforts have turned toward exploring their potential in treating autoimmune diseases. Bibliometric analysis of 210 records from 128 academic journals published by 372 institutions in 40 countries/regions indicates a growing number of publications on CAR-T therapy for autoimmune diseases, covering a range of subtypes such as systemic lupus erythematosus, multiple sclerosis, among others. CAR-T therapy holds promise in mitigating several shortcomings, including the indiscriminate suppression of the immune system by traditional immunosuppressants, and non-sustaining therapeutic levels of monoclonal antibodies due to inherent pharmacokinetic constraints. By persisting and proliferating in vivo, CAR-T cells can offer a tailored and precise therapeutics. This paper reviewed preclinical experiments and clinical trials involving CAR-T and CAR-related therapies in various autoimmune diseases, incorporating innovations well-studied in the field of hematological tumors, aiming to explore a safe and effective therapeutic option for relapsed/refractory autoimmune diseases.

4.
EMBO Mol Med ; 16(4): 966-987, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38409527

ABSTRACT

B-cell maturation antigen (BCMA), expressed in plasmablasts and plasma cells, could serve as a promising therapeutic target for autoimmune diseases. We reported here chimeric antigen receptor (CAR) T cells targeting BCMA in two patients with highly relapsed and refractory myasthenia gravis (one with AChR-IgG, and one with MuSk-IgG). Both patients exhibited favorable safety profiles and persistent clinical improvements over 18 months. Reconstitution of B-cell lineages with sustained reduced pathogenic autoantibodies might underlie the therapeutic efficacy. To identify the possible mechanisms underlying the therapeutic efficacy of CAR-T cells in these patients, longitudinal single-cell RNA and TCR sequencing was conducted on serial blood samples post infusion as well as their matching infusion products. By tracking the temporal evolution of CAR-T phenotypes, we demonstrated that proliferating cytotoxic-like CD8 clones were the main effectors in autoimmunity, whereas compromised cytotoxic and proliferation signature and profound mitochondrial dysfunction in CD8+ Te cells before infusion and subsequently defect CAR-T cells after manufacture might explain their characteristics in these patients. Our findings may guide future studies to improve CAR T-cell immunotherapy in autoimmune diseases.


Subject(s)
Multiple Myeloma , Myasthenia Gravis , Humans , Immunotherapy, Adoptive , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Multiple Myeloma/therapy , B-Cell Maturation Antigen/genetics , Cell Lineage , Myasthenia Gravis/therapy , T-Lymphocytes , Immunoglobulin G
5.
Proc Natl Acad Sci U S A ; 121(6): e2315990121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38289960

ABSTRACT

Immune-mediated necrotizing myopathy (IMNM) is an autoimmune disorder associated with the presence of autoantibodies, characterized by severe clinical presentation with rapidly progressive muscular weakness and elevated levels of creatine kinase, while traditional pharmacological approaches possess varying and often limited effects. Considering the pathogenic role of autoantibodies, chimeric antigen receptor (CAR)-T cells targeting B cell maturation antigen (BCMA) have emerged as a promising therapeutic strategy. We reported here a patient with anti-signal recognition particle IMNM refractory to multiple available therapies, who was treated with BCMA-targeting CAR-T cells, exhibited favorable safety profiles, sustained reduction in pathogenic autoantibodies, and persistent clinical improvements over 18 mo. Longitudinal single-cell RNA, B cell receptor, T cell receptor sequencing analysis presented the normalization of immune microenvironment after CAR-T cell infusion, including reconstitution of B cell lineages, replacement of T cell subclusters, and suppression of overactivated immune cells. Analysis on characteristics of CAR-T cells in IMNM demonstrated a more active expansion of CD8+ CAR-T cells, with a dynamic phenotype shifting pattern similar in CD4+ and CD8+ CAR-T cells. A comparison of CD8+ CAR-T cells in patients with IMNM and those with malignancies collected at different timepoints revealed a more NK-like phenotype with enhanced tendency of cell death and neuroinflammation and inhibited proliferating ability of CD8+ CAR-T cells in IMNM while neuroinflammation might be the distinct characteristics. Further studies are warranted to define the molecular features of CAR-T cells in autoimmunity and to seek higher efficiency and longer persistence of CAR-T cells in treating autoimmune disorders.


Subject(s)
Autoimmune Diseases , Multiple Myeloma , Muscular Diseases , Receptors, Chimeric Antigen , Humans , Multiple Myeloma/drug therapy , B-Cell Maturation Antigen , Neuroinflammatory Diseases , Immunotherapy, Adoptive , Autoimmune Diseases/therapy , Autoantibodies , Muscular Diseases/therapy , Single-Cell Analysis , Cell- and Tissue-Based Therapy , Tumor Microenvironment
6.
Neurosci Bull ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38227181

ABSTRACT

Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune inflammatory demyelinating disease of the central nervous system (CNS) accompanied by blood-brain barrier (BBB) disruption. Dysfunction in microglial lipid metabolism is believed to be closely associated with the neuropathology of NMOSD. However, there is limited evidence on the functional relevance of circulating lipids in CNS demyelination, cellular metabolism, and microglial function. Here, we found that serum low-density lipoprotein (LDL) was positively correlated with markers of neurological damage in NMOSD patients. In addition, we demonstrated in a mouse model of NMOSD that LDL penetrates the CNS through the leaky BBB, directly activating microglia. This activation leads to excessive phagocytosis of myelin debris, inhibition of lipid metabolism, and increased glycolysis, ultimately exacerbating myelin damage. We also found that therapeutic interventions aimed at reducing circulating LDL effectively reversed the lipid metabolic dysfunction in microglia and mitigated the demyelinating injury in NMOSD. These findings shed light on the molecular and cellular mechanisms underlying the positive correlation between serum LDL and neurological damage, highlighting the potential therapeutic target for lowering circulating lipids to alleviate the acute demyelinating injury in NMOSD.

7.
Brain ; 147(1): 163-176, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37740498

ABSTRACT

Microglia-mediated neuroinflammation contributes to acute demyelination in neuromyelitis optica spectrum disorders (NMOSD). Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) in the CSF has been associated with microglial activation in several neurodegenerative diseases. However, the basis for this immune-mediated attack and the pathophysiological role of sTREM2 in NMOSD remain to be elucidated. Here, we performed Mendelian randomization analysis and identified a genetic association between increased CSF sTREM2 and NMOSD risk. CSF sTREM2 was elevated in patients with NMOSD and was positively correlated with neural injury and other neuroinflammation markers. Single-cell RNA sequencing of human macrophage/microglia-like cells in CSF, a proxy for microglia, showed that increased CSF sTREM2 was positively associated with microglial dysfunction in patients with NMOSD. Furthermore, we demonstrated that sTREM2 is a reliable biomarker of microglial activation in a mouse model of NMOSD. Using unbiased transcriptomic and lipidomic screens, we identified that excessive activation, overwhelmed phagocytosis of myelin debris, suppressed lipid metabolism and enhanced glycolysis underlie sTREM2-mediated microglial dysfunction, possibly through the nuclear factor kappa B (NF-κB) signalling pathway. These molecular and cellular findings provide a mechanistic explanation for the genetic association between CSF sTREM2 and NMOSD risk and indicate that sTREM2 could be a potential biomarker of NMOSD progression and a therapeutic target for microglia-mediated neuroinflammation.


Subject(s)
Alzheimer Disease , Neuromyelitis Optica , Animals , Mice , Humans , Microglia/metabolism , Alzheimer Disease/metabolism , Neuromyelitis Optica/genetics , Neuromyelitis Optica/metabolism , Neuroinflammatory Diseases , Biomarkers/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Receptors, Immunologic/genetics
8.
J Neurochem ; 167(4): 489-504, 2023 11.
Article in English | MEDLINE | ID: mdl-37823326

ABSTRACT

Chronic cerebral hypoperfusion leads to sustained demyelination and a unique response of microglia. Triggering receptor expressed on myeloid cells 2 (Trem2), which is expressed exclusively on microglia in the central nervous system (CNS), plays an essential role in microglial response in various CNS disorders. However, the specific role of Trem2 in chronic cerebral hypoperfusion has not been elucidated. In this study, we investigated the specific role of Trem2 in a mouse model of chronic cerebral hypoperfusion induced by bilateral carotid artery stenosis (BCAS). Our results showed that chronic hypoperfusion induced white matter demyelination, microglial phagocytosis, and activation of the microglial autophagic-lysosomal pathway, accompanied by an increase in Trem2 expression. After Trem2 knockout, we observed attenuation of white matter lesions and microglial response. Trem2 deficiency also suppressed microglial phagocytosis and relieved activation of the autophagic-lysosomal pathway, leading to microglial polarization towards anti-inflammatory and homeostatic phenotypes. Furthermore, Trem2 knockout inhibited lipid droplet accumulation in microglia in vitro. Collectively, these findings suggest that Trem2 deficiency ameliorated microglial phagocytosis and autophagic-lysosomal activation in hypoperfusion-induced white matter injury, and could be a promising target for the treatment of chronic cerebral hypoperfusion.


Subject(s)
Brain Ischemia , Demyelinating Diseases , White Matter , Animals , Mice , White Matter/pathology , Microglia/metabolism , Phagocytosis , Brain Ischemia/metabolism , Lysosomes/metabolism , Demyelinating Diseases/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
9.
J Neuroinflammation ; 20(1): 89, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37013543

ABSTRACT

Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating disorder of the central nervous system (CNS) triggered by autoimmune mechanisms. Microglia are activated and play a pivotal role in response to tissue injury. Triggering receptor expressed on myeloid cells 2 (TREM2) is expressed by microglia and promotes microglial activation, survival and phagocytosis. Here, we identify a critical role for TREM2 in microglial activation and function during AQP4-IgG and complement-induced demyelination. TREM2-deficient mice had more severe tissue damage and neurological impairment, as well as fewer oligodendrocytes with suppressed proliferation and maturation. The number of microglia clustering in NMOSD lesions and their proliferation were reduced in TREM2-deficient mice. Moreover, morphology analysis and expression of classic markers showed compromised activation of microglia in TREM2-deficient mice, which was accompanied by suppressed phagocytosis and degradation of myelin debris by microglia. These results overall indicate that TREM2 is a key regulator of microglial activation and exert neuroprotective effects in NMOSD demyelination.


Subject(s)
Membrane Glycoproteins , Microglia , Neuromyelitis Optica , Receptors, Immunologic , Animals , Mice , Central Nervous System , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Microglia/metabolism , Myelin Sheath/metabolism , Neuromyelitis Optica/metabolism , Phagocytosis/genetics , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
10.
Signal Transduct Target Ther ; 8(1): 5, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36596762

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy that targets B-cell maturation antigen (BCMA) have great potentials in autoimmune diseases and could be novel therapeutics for relapsed/refractory neuromyelitis optica spectrum disorder (NMOSD). To evaluate the safety and efficacy of the CT103A, a self-developed BCMA-targeting CAR construct against BCMA, in patients with AQP4-IgG seropositive NMOSD, an ongoing, investigator-initiated, open-label, single-arm, phase 1 clinical trial is conducted at our center. In total, 12 patients were administered with a CAR-BCMA infusion. Ten of the 12 patients dosed were women (83.3%), with a median age of 49.5 years (range, 30-67). were The most common events of grade 3 or higher were hematologic toxic effects. Seven patients (58%) developed infections, but no grade 4 infections occurred. Cytokine release syndrome was reported in all patients with only events of grade 1 or 2 observed. During the follow-up of a median 5.5 months, 11 patients had no relapse; all patients generally reported improvement in disabilities and quality-of-life outcomes; 11 patients' AQP-4 antibodies in serum showed a downward trend by the cutoff date. CAR T-cell expansion was associated with responses, and persisted more than 6 months post-infusion in 17% of the patients. In summary, CAR T-cell therapy shows a manageable safety profile and therapeutic potentials for patients with relapsed/refractory AQP4-IgG seropositive NMOSD. Another expansion phase is currently underway to determine the safety and efficacy of CAR T-BCMA infusion in patients with other neuro-inflammatory diseases.


Subject(s)
Immunotherapy, Adoptive , Neuromyelitis Optica , Humans , Female , Adult , Middle Aged , Aged , Male , Immunotherapy, Adoptive/adverse effects , Neuromyelitis Optica/therapy , Neuromyelitis Optica/etiology , Immunoglobulin G
SELECTION OF CITATIONS
SEARCH DETAIL
...